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Abstract: The utility of lithium t-butyl-N-tosyloxycarbamate (LiBTOC) as a ( + )NHBOC synthon in highly diastereoselective 
reactions with chiral cis-aminoindanol derived amide cuprates is described. The diastereoselectivities of these reactions 
ranged from 96% to greater than 99%. The subsequent transformation of these adducts to a-amino acids is also described. 
© 1997 Elsevier Science Ltd. 

The importance of a-amino acids has stimulated the development of numerous methods for 

their synthesis. 1 Among these, the electrophilic amination of chiral enolates possesses a broader degree 

of generality than the alkylation of chiral glycine derivatives, since the latter process is subject to the 

limitations of alkyl halide reactivity. 2 Unfortunately, only a few suitable reagents capable of 

electrophilic amination have thus far been identified, for example, di-t-butyl azodicarboxylate 3, trisyl 

azide 4, 1-chloro-l-nitrosocyclohexane 5 and hydroxyamine derivatives. 6 Genet et al. have shown that 

lithium t-butyl-N-tosyloxycarbamate (LiBTOC) reacts with various organometallics to afford N-BOC- 

protected amine derivatives. 7 The commercially available 1S,2R-cis aminoindanol 1 makes it an 

attractive template for developing new methods in asymmetric synthesis, for example, as an auxiliary 

or as a component of chiral ligands. 8 As an extension of our recent work on the 1,2-migration of chiral 

enolate zincates 9, a highly diastereoselective electrophilic amination of chiral amide cuprates has been 

developed, based on the use of lithium t-butyl-N-tosyloxycarbamate (LiBTOC) as a "+NHBOC" 

synthon. 

The amide substrates 2a-g chosen for this study were prepared from the corresponding acid 

chlorides. The acid chlorides were reacted with 1S ,2R-c i s  aminoindanol 1 in the presence of 

triethylamine to afford the hydroxyamides, which were subsequently treated with 2-methoxypropene 

and PPTS to give the desired amides 2a-g. Using this highly efficient one-pot procedure, various 

amides 2a-g have been prepared in high yields (91%-98%). 10 

Initial electrophilic amination studies were conducted on the dihydrocinnamate derivative 2a 

(Table 1). LiBTOC was freshly prepared by deprotonation of t-butyI-N-tosyloxycarbamate with 

nBuLi. The direct reaction of the lithium amide enolate of 2a with LiBTOC did not yield the expected 

a-BOC-protected amino amide 3a (entry 5). Similarly, amination under conditions which were 

presumed to generate diorganozinc (entries 1 and 6), organozinc chloride (entry 2), and higher order 

zincate species (entries 3 and 4) were also unsuccessful. In contrast, after transmetallation of the 
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lithium enolate of 2a with CuCN (I.1 equiv.), the resultant amide cuprate reacted rapidly with LiBTOC 

at -78 °C to afford the ct-BOC-protected amino amide 3a in 77% yield. 

Tttble 1. Electroohilic Amination Studies 
1) nBuLi 

0 2) transmetallation 
B n ' ~  Xc 3) TsON(Li)BOC 

2a 

NH2 
,v  

[ ~ ' " O  H Xe= 

1 

O 

- Bn,,~X c 
NHBOC 

3=, 

Entry Li enolate M TsON(Li)BOC BnOLi Temp. Product 
(equiv.) /equiv. (equiv.) (equiv.) (°C) (3a) 

1 1.0 ZnCI2/O.5 1.1 -78 -> 0 0% 

2 1.0 ZnCI2/1.0 1.1 -78 -> 0 0% 

3 1.0 ZnC12/1.0 1.1 3.0 -78 -> 0 0% 

4 1.0 ZnCI2/0.5 1.1 3.0 -78 -> 0 0% 

5 1.0 1.1 -78 -> 0 0% 

6 1.0 MeZnCI/1.0 1.1 -78 -> 0 0% 

7 1.0 CuCN/1.0 1.1 -78 -> 0 77% a 

a isolated yield. 

A controlled study of deprotonation was examined on the isobutyric derivative 2f. The lithium 

amide enolate, generated with nBuLi (1.1 equiv.) in THF at -78 °C, was quenched by the addition of 

AcOH in MeOH at -78 °C and only 85% of the amide was recovered (determined by HPLC). During 

deprotonation, two major by-products were formed: (1) the indeneamide 4 derived from benzylic 

deprotonation followed by 13-elimination of acetone and (2) the acetone-aldol product 5 of the lithium 

enolate and the liberated acetone. 11 The lithium enolate, generated as described above, was transferred 

via cannula into a slurry of CuCN (1.I equiv.) in THF at -78 °C. The slurry was allowed to warm until 

dissolution was complete (ca. -5 °C). The resulting cuprate was cooled to -78 °C, and quenched by the 

addition of AcOH in MeOH at -78 °C. HPLC analysis showed that there was no further decomposition 

during the transmetallation. 

Having established a viable route to the amide cuprates, several amides 2a-g were examined for 

amination via the amide cuprate protocol (Table 2). The amide cuprates, generated as described above, 

were allowed to react with the freshly prepared LiBTOC (1.1 equiv.) at -78 °C for 30 min. After the 

solution was quenched at -78 °C with MeOH (5 equiv.), followed by the addition of a saturated NH4CI 

solution (aq), the reactions were allowed to warm to ambient temperature. The resultant ct-BOC- 

protected amino amides 3a-g were isolated as single diastereomers by simple flash chromatography. 

From the data in Table 3 it is evident that this amination process enjoys considerable generality while 

displaying excellent diastereoselectivity. As expected, diminished reactivity towards LiBTOC was 
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observed with more sterically hindered substrates. The assignment of absolute configuration to the 

major product diastereomers was made by correlation with a-amino acids of known configuration via a 

two step sequence. 12 As in the analogous alkylation 8a, 11 and 1,2-migration of enolate zincate studies 9, 

the sense of asymmetric induction observed in this amination process was consistent with preferential 

approach of LiBTOC from the least hindered face of the M-enolate rotamer. 11 Procedures for removal 

of the auxiliary were very straightforward. Hydrolysis with 6N HC1 afforded a-amino acids in good 

yields (high ee) and proved to be generally effective for cis-aminoindanol amide hydrolysis (Table 3). 

After the pH of the reaction mixture was adjusted to 11, cis-aminoindanol was recovered by extraction 

of the aqueous solution with dichloromethane (80%). 

Table 2. Electrophilic Amination of Amide Cuprates 
1) nBuLi, -78 °C O 
2) CuCN, -78 oc->0 oc R.~U.. 

R Xc = Xc 
3) TsON(Li)BOC, -78 °C N HBOC 

2a-g 3a-g 

entry amide R product % isolated yield % de 

1 2a PhCH2 3a 13 77 (79) a >99 

2 2b Ph 3b 51 (56) a >99 

3 2c CH3 3c 63 (72) a >99 

4 2d CH3(CH2)3 3d 68 (76) a 96.3 

5 2e (CH3)2CHCH2 3e 72 (80) a >99 

6 2f (CH3)2CH 3f 67 b >99 

7 2[ (CH3)3C 3~ 52 (80) a >99 

a based on recovered sm. b based on BOCNHOTs. 2equiv. amide was used. 

Table 3. Hydrolysis of cis-Aminoindanol Amides 
O O 

6NHCI. R ~ .  
R Xc reflux O H 

NHBOC NH2 
3a-b 6a-b 

confi 8. 
S 

S 

S 

S 

S 

S 

S 

entry substrate R product %yield a %eeb 

1 3a PhCH2 6a 86.1 98.2 

2 3b Ph 6b 81.2 89.4 

a based on HPLC assay yield, b determined by HPLC analysis using a Crownpak CR(+) column. 

In conclusion, the electrophilic amination of chiral amide cuprates with LiBTOC, where 

"+NHBOC" was directly transfered to a wide range of amides with predictable absolute configuration 

in high enantiomeric purity and good yield, provides an expedient approach to the asymmetric 

synthesis of c~-amino acid derivatives. 
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2g was prepared via a two-step sequence. The mixed pivalic acid anhydride, which was 
generated in situ from the corresponding carboxylic acid, reacted with cis-aminoindanol to give 
the hydroxyamide. After workup, the isolated hydroxyamide was treated with 2- 
methoxypropene and PPTS to afford the desired amide 2g. 
Askin et al. also observed the indeneamide by-product derived from benzylic deprotonation in a 
similar system. Askin, D.; Wallace, M. A.; Vacca, J. P.; Reamer, R. A.; Volante, R. P.; 
Shinkai, I. J. Org. Chem. 1992, 57, 2771. 

12. The absolute stereochemistry of the compounds as well as their structures were determined 
unequivocally by the following protocol. The commercially available N-BOC-protected amino 
acids were coupled with 1S,2R-cis aminoindanol 1 according to the scheme below. The 
resulting diastereomers were baseline-resolved by HPLC using a Zorbax Rx-C8 reversed- 
phased column. Conditions for amide formation see: Ho, G. J.; Emerson, K. M.; Mathre, D.; 
Shuman, R. F.; Grabowski, E. J. J. J. Org. Chem. 1995, 60, 3569. 

O 1) cL~-aminoindanol O 
~ I L  EDC' HOBt' CH2Cl2' 0 °C . R 

R O H 2) 2-methoxypropene Xc 
NHBOC PPTS, CH2CI2, RT NHBOC 

13. [3aS-[3(R*), 3ao¢. 8actl]-[2-(8.8a-dihvdro-2.2-dimethvl-2H-indenoll.2-dloxazol-3(3aH)-vl~-2- 
oxo-l-(phenylmethyl)ethylcarbamic acid 1,1-dimethylethyl ester (3a). 1H NMR (300 MHz, CDCI3) 8 
7.40-7.16 (m, 7H), 6.93-6.87 (m, 1 H), 6.22 (d, J=7.5 Hz, IH), 5.85 (d, J=4.3 Hz, 1H), 5.11 (d, J=9.6 
Hz, 1H), 4.94-4.82 (m, 2H), 3.48 (dd, J=13.4, 8.0 Hz, 1H), 3.08-3.06 (m, 2H), 2.99 (dd, J=13.5, 6.4 Hz, 
1H), 1.64 (s, 3H), 1.40 (s, 9H), 1.33 (s, 3H): 13C NMR (62.9 MHz, CDCI3) 6 168.5, 155.4, 140.7, 
140.4, 137.0, 129.9, 128.7, 128.1,127.1, 127.0, 125.5, 123.9, 96.7, 80.0, 79.3, 65.7, 54.8, 38.6, 36.2, 
28.2, 26.3, 23.8.; Analysis calc'd for C26H32N204: C, 71.54 H, 7.39; N, 6.42; found: C, 71.75; H, 
7.36; N, 6.34. 
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